"Responsible Packaging": Renewable Materials within the Context of the Biorefinery

> William J. Orts & Gregory M. Glenn USDA-Agricultural Research Service Western Regional Research Center Albany, CA, USA

> > March 8, 2007





## Introduction

Snapshot ⇔ Fuel ethanol & biorefineries

Snapshot ⇔ Renewable packaging

**Their commonalities** 

New directions "Athletic" Biorefineries



## **Corn-to-Ethanol: U.S trends**



- Production is at 5 billion gals/yr
- ~2% of transportation fuel
- Ethanol uses ~20% of US corn
  - Food vs. fuel debate
  - Monoculture
- Most ethanol is not produced near refineries
- It is not widely produced in the most populated states.

## **U.S. Ethanol Biorefinery Locations**







Polyhydroxyalkanoates 1-3-propane-diol

FEEDSTOCKS

## The Biorefinery $\Leftrightarrow$ Sugar is key!





Source: Characterization of MSVV in the US: 1996 Update, US EPA, Washington, DC

### **Responsible Packaging History**

- Biodegradable
  - Starch blends ??
- Compostable

#### **ASTM D6400**





## Bill Rathje

## **Responsible Packaging History**

# Sustainable ⇔ Biobased Content ASTM D6852

### Based on "age of the carbon"

#### **ASTM D6866-04v**

• isotopic ratios of 14C/12C and 13C/12C are different depending on whether the carbon is "old" (fossil fuel) or "new"

• Carbon Credits ⇔ "carbon neutral substances"

## Wheat-Based Composites Gregory Glenn USDA-ARS-Albany

#### Paperboard

#### Wheat starch/fiber





## **Starch Packaging Plates and Bowls**



#### **Greg Glenn**



# Smart&Final.

## Polyhydroxyalkanoate



 $CO_2$ 





High Performance Microbial Fermentation





### **PHAs: Polymer Diversity**

#### ✓ Metabolix is the main American producer (BP & ADM)

✓ Of past interest to P&G (NODAX), ICI, Zeneca, & Monsanto



## **PHAs: BioPolyester Properties**



## **Polylactic acid, PLA:** Cargill









## **Biomass Cellulose-to-ethanol**



Farmers can no longer burn straw in California and many other states.

**Cellulose from straw is a potential source of ethanol** 

## **Straw Biomass Utilization:**



# Straw-based packaging







## Straw for cellulose-to-ethanol



#### The Canadian company, Iogen, is converting wheat straw and corn stover to ethanol



#### Convert Municipal Solid Waste (MSW) to Ethanol



#### MSW as a Platform for Biomass-to-Ethanol Biorefinery

- MSW ⇔ 236 million tons/year in U.S.
- 35 45% paper and paperboard products
- Will reduce landfill volume by >40%
- In MSW, paper is already fractionated
- Can produce other co-products
  ⇔ Pulp
  ⇔ Methane
  ⇔ Syngas products

"Athletic Biorefinery"

## **Biomass Pretreatment:**

A pressurized hot water treatment allows straw, co-mingled with MSW, to be hydrolyzed relatively easily.





## **Cellulose-to-Ethanol Biorefinery** $\Leftrightarrow$ **CR**<sup>3</sup>



# Processed paper from recovered fiber

Biomass ⇔ MSW and agwaste processing plant



#### **Enzymatic hydrolysis of MSW**



#### **U.S. ETHANOL MANUFACTURING LOCATIONS**



#### Summary:

Many renewable packaging materials will result from biorefinery development

Strategies for biorefinery development must extend beyond corn

Flexible biorefineries will expand our scope ⇔ MSW ??

New research in enzymes and microbes should lower costs

## **BCE:**

**Bor-Sen Chiou Gregory Glenn Kevin Holtman** Syed Imam **Charles Lee Rick Offeman Bill Orts George Robertson Mike Smith Kurt Wagschal Dominic Wong De Wood** 



## Thank you.





## **Oil Transport Routes (1994)**

